NEW TYPE CHALCONES FROM LICORICE ROOT

Tamotsu Saitoh and Shoji Shibata

Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan (Received in Japan 21 October 1975; received in UK for publication 28 October 1975)

During the course of studies on the chemical principles of the root bark of licorice, a commercially available herb drug consisting of various species of Glycyrrhiza (Leguminosae), we isolated some new flavonoid compounds which are characteristic of the species.

From Sinking licorice, presumably the roots of a variety of Glycyrrhiza glabra L, we obtained two new peculiar chalcones named licochalcones A and B.

Licochalcone A (|), yellow needles, m p | 101-102°, $C_{21}H_{22}O_4$ (M^+ 338), IR λ_{max}^{KBr} cm⁻¹ 3440 (OH), 1640 (C=O). The UV spectrum of licochalcone A suggested a close similarity in the structure with echinatin (3), a chalcone which was isolated by Furuya et al. ²⁾ from a tissue culture derived from the seedling of Glycyrrhiza echinata L. The NMR spectrum (in CDCl₃) of licochalcone A showed the presence of an α , α -dimethylallyl side chain (δ 1.41 (s, 2 x CH₃), 6.19 (q, J=10 and 18 Hz, H_A), 5.31 (d, J=10 Hz, H_B), 5.34 (d, J=18 Hz, H_C)), a methoxyl group (δ 3.81), six aromatic protons and two olefinic protons of trans- α , β -unsaturated ketone (δ 7.53 (d, J=15 Hz, H_{α}), 8.03 (d, J=15 Hz, H_{β})). Of six aromatic protons four compose A₂B₂ signals (δ 6.97 (d, J=8.5 Hz, 2H), 7.97 (d, J=8.5 Hz, 2H)) and the others appear as two singlets (δ 6.43 and 7.45, 1H each). From these results, two alternative structures, (1) and (2), can be presumed for licochalcone A. The A₂B₂ signals (δ 7.97) are assigned to H₍₂₁₎ and H₍₆₁₎ showing a good agreement with those of echinatin

Echinatin gave a characteristic mass fragment (M^+ -31 (m/e 239)) as the base peak, which corresponds to the peak (m/e 307) observed in the mass spectrum of licochalcone A

The appearance of M^+ -31 ion reveals the location of methoxyl at the 2 -position by the mechanism as shown below³⁾.

Licochalcone B (4), yellow needles, m p 195-197°, $C_{16}H_{14}O_{5}$ (M⁺ 286), $UV \cdot \lambda \frac{EtOH}{max}$ nm 262, 360. The NMR spectrum (d₆-acetone) of licochalcone B revealed the presence of a methoxyl and six aromatic protons, of which four appeared as $A_{2}B_{2}$ signals (δ 6.98 (d, J=8.5 Hz, 2H), 8.07

4462 No. 50

(d, J=8.5 Hz, 2H)) and two as AB signals (δ 6.73 (d, J=8.5 Hz), 7.31 (d, J=8.5 Hz)). A pair of doublet signals at δ 7.69 (J=16 Hz) and 8.03 (J=16 Hz) were assigned to H_{α} and H_{β} of trans- α . β -unsaturated ketone. The appearance of M⁺-31 (m/e 255) ion peak in the mass spectrum and the deshielding effect of C=0 on H_(2') and H_(6') in the NMR spectrum led a formula (4) for licochalcone B.

In addition to echinatin (3), licochalcones A and B (1 and 4) are noted to be unusual as having no hydroxyl at the position 2' (or 6'). Furthermore licoricone (5), an isoflavone isolated from North-Eastern Chinese Licorice (the root of <u>G. uralensis</u> Fischer et DC.), is also different from usual flavonoid to possess a phloroglucinol structure in B-ring instead of A-ring.

OH

R=C(CH₃)₂CH=CH₂, R'=H m/e 307 R=R'=H m/e 239 R=H, R'=OH m/e 255

These facts suggest that there might be a new biosynthetical system in flavonoid, which should be designated biogenetical retroflavonoid, in which, contrary to the usual flavonoid, the A-ring would be derived from shikimate and the B-ring from polyketide of malonate origin

Acknowledgements -- The authors wish to thank Prof. T. Furuya, School of Pharmaceutical Sciences, Kitasato University, for his supply of a sample of echinatin. Thanks are also due to the Ministry of Education, Science and Culture, Japan for the grant-in-aid for scientific research.

REFERENCES

- 1) a) M.Kaneda, T.Saitoh, Y.Iitaka and S.Shibata, Chem. Pharm. Bull. (Tokyo), 21, 1338 (1973), b) T.Saitoh, T.Kinoshita and S.Shibata, Chem. Pharm. Bull. (Tokyo), in press. Ref. are cited therein
- 2) T.Furuya, K.Matsumoto and M.Hikichi, Tetrahedron Letters, 2567 (1971).
- 3) It has been proved that chalcones having a methoxyl in the 2-position show M-31 ion in their mass spectra. The details are to be published soon